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Summary 

Quantification of the risk from industrial major hazard sites often requires knowledge of the 
dispersion of toxic gas arising from accidental releases and knowledge of the effects of gas concen- 
trations on the population exposed. The development in recent years of Box models of dense gas 
dispersion has made it possible to predict the bulk behaviour of a cloud of hazardous gas released 
in a major industrial accident. Similarly, Probit analysis has advanced our ability to predict mor- 
tality rate as a function of received dose. This paper combines both techniques in a theoretical 
study of the statistical properties of the number of people killed in a site in an industrial plant as 
the result of a toxic spill. The effect on the percentage mortality rate of ignoring the between-spill 
variability is illustrated with reference to a hypothetical spill of 20 tonnes of chlorine. The paper 
also contains a discussion of the distribution of the Probit parameters evaluated over a range of 
commonly occurring volatile industrial compounds, and closed with some recommendations whose 
purpose is to improve the reliability of quantitative risk assessment of toxic spills. 

1. Introduction 

Quantification of the risk from industrial major hazard sites often requires 
knowledge of the dispersion of toxic gas arising from accidental releases and 
knowledge of the effects of gas concentrations on the population exposed. The 
increasing interest shown in recent years in the development of simple math- 
ematical models (‘Box’ models) of the dispersion of denser-than-air clouds - 
see, for example, [l] for a general account - has gone a long way towards 
increasing our ability to predict the behaviour of clouds of hazardous gas re- 
leased to the atmosphere as the result of a major industrial accident. Progress 
in the development of such models has brought with it the need to look into 
the question of how such models may best be used in predicting the statistical 
properties of the number of people killed at a site as the result of such a release. 
This paper describes a preliminary attempt to answer this question. 

For acutely toxic gases such as chlorine, ammonia and sulphur dioxide the 
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connecting link between cause and effect - the so-called ‘dose-response’ re- 
lationship - is already reasonably well researched, at least for animals [ 21. 
The type of effect considered is that of death to a person exposed to the release. 
It should be noted that other types of effect (serious injury, etc.) could be 
handled within the same formalism, and other types of cause (radiation, blast, 
etc.) could also be considered by suitably redefining the dose-response 
relationship. 

Section 2 describes a simple probabilistic model governing the number of 
people killed at a given site as the result of a toxic spill, taking due account of 
between-spill variation in dose received. Section 3 describes an attempt to 
quantify the effect of ignoring the between-spill variability in the dose received 
when calculating the probability of death. Section 4 contains the results of 
some calculations in which a new parameterization of the Probit model was 
fitted to a collection of dose-response data sets mentioned in [3] while the 
implications of this work for the use of Box models in hazard assessment are 
discussed in Section 5. 

2. Statistical analysis of toxic spills 

We envisage a cloud of toxic gas dispersing over an industrial plant as the 
result of an accidental spillage, and set up a simple statistical model for the 
number of people killed at a given location in the plant as a consequence of the 
spill. In any one instance of the spill, the toxic dose received at a given location 
will be a function, amongst other things, of the time-varying concentration at 
that location. In a future replication of the spill, the dose received at the loca- 
tion in question will be different from its previous value as a result of the tur- 
bulent nature of the diffusion process. The extent of the between-spill varia- 
bility will depend on those physical parameters which are held fixed from spill 
to spill and those which are allowed to vary. In all cases, the magnitude of the 
variability will be measured by the standard deviation of the ensemble of spills 
considered. 

In this model the following assumptions are made: 
(i) that there are N people at risk at the location in question, each one of 

whom receives a dose D=JC”dt, where C is the instantaneous concen- 
tration of the toxic gas, n is an exponent characteristic of the gas, and 
the integration is over the duration of the exposure; 

(ii) that, on the basis of the results quoted in [4], over successive realisa- 
tions of the spill the dose D is Lognormally distributed in the sense that 
the (natural) logarithm of the dose, In D, has a mean value of In D and 
a variance of o2 (In D): 

In D N N(ln 6, o2 (In D)); (1) 

(iii) that the probability, 0, that an individual taken at random from the pop- 
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(iv) 

ulation at risk will be killed as a result of the dose received during the 
spill is given by a dose-response relationship of the form &O(D), and 
that the dose-response relationship may be approximated by the Probit 
(Probability unit) model 

e(D) = @(Kln(D/D,,) = Q(d), (2) 

where @ is the standard cumulative Normal distribution function and S=K 
In (D/l&) is the standardised log-dose, in which D,, is the median fatal dose 
and K is a scaling parameter proportional to the slope of the curve 0 against In 
D when D = DSO. 

It is perhaps worth remarking, in connection with assumption (ii) above, 
that the analysis reported in [ 41 was carried out by using unaveraged concen- 
tration records. Mylne [5] shows that the initial application of a running av- 
erage to a concentration record leads to a reduction in the calculated dose for 
that record. It follows that at the level of the ensemble an increase in averaging 
time would lead to a reduction in a( In D). 

The form adopted above for the dose-response relationship may be reduced 
to the more familiar (but less informative) version of the Probit model by 
noting that if 8= @(K In ( D/DBO) and D = C “t, then 

@-1(8)=Kln(D/D,,)=-KlnD,,+KlnC”t, 

from which it follows in the usual Probit notation that 

(3) 

Y=@-‘(8)+5=A+BlnC”t, 

where A= (5-KlnD,,,) andB=K. 

(4) 

Assumption (iii) above enables us to write down the mean and variance of 
the number u of people killed in any one realisation of the spill by reference to 
the properties of the Binomial distribution. The mean of the number of people 
killed as the result of receiving a dose D - the ‘conditional’ mean - is given by 
the expression 

HulD) =NO(D) (5) 

respectively. In a subsequent realisation of the spill, of course, the dose received 
will be different, though by (ii) above all doses are drawn from a suitable Log- 
normal distribution. The problem is then to determine the marginal mean of 
the number of people killed, i.e. the mean making due allowance for the be- 
tween-spill Lognormal variation in the dose. 

In terms of the dose D, the marginal mean is given by 

~u(~)=~,[~(~lD)l, (6) 
where the expectation operator ED [ .] denotes integration with respect to vari- 
ation in D. Thus 
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~U(u)=S~(uID)p(D)dD=NS~(Kln(D/D,,lp(D)dD, (7) 

by using eqns. (2) and (5)) where p (D) is the probability density function of 
D, which follows immediately from the Lognormality of D as in eqn. ( 1) . 

Equation (7) enables us to define the marginal mean in terms of an effective 
dose D*, by means of the expression 

p(u)=N@(Kln(D*lD50)) (8) 

Thus, the effective dose D* is the dose that gives rise to the same mean number 
of deaths as would be found by averaging the number of deaths observed in 
successive realisation of the spill in which the dose D is allowed to vary in the 
Lognormal manner of eqn. (1 ), rather than being held fixed a in the discussion 
of the conditional statistics. 

The above development can also be carried through in terms of the standar- 
dised log-dose S defined, from eqn. (2 ) , as 

&Kln(D/D,,) (9) 

For the purpose of a general discussion such as this, it is more useful to work 
in terms of 6 than D, because the introduction of the parameters K and Dso 
into eqn. (9) has the effect of compensating for the specific characteristics of 
a given toxic gas and the argument thus becomes quite general. Lognormality 
in D then becomes Normality in 6, and we can write 

B-M& aW)), (10) 

where&ln(D/D,,) anda2(6)=K2 o”(lnD). 
Analogously with eqn. (8), the effective standardised log-dose 6* is then 

defined implicitly by the expression 

p(u) =N@(6*) =NJ@(G)p(S)dS, (11) 

where 6* is the standardised log-dose that gives rise to the same mean number 
of deaths as would be found by averaging the number of deaths observed in 
successive realisations of the spill in which the standardised log-dose is allowed 
to vary in the Normal manner of eqn. (10). 

The difference S* - 6 ’ IS, in effect, the correction that should be applied to 
the ideal Box model prediction 8 in order to allow for the effect of between- 
spill variations in 8. This is illustrated in Fig. 1. In practice, of course, a Box 
model would contain systematic error, and would produce a prediction S,,, 5 8. 
In view of the preceding discussion, it seems reasonable to regard a Box model 
as acceptable if it produces predictions such that the discrepancy between S,,, 
and 8is comparable to that between 6* and 6. 

3. Statistical analysis of dose variability 

The effect of the difference between S* and Jon the probability of death at 
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the site in question may perhaps best be studied by reference to a tabulation 
of the difference @(6*) -D(8) for a range of values of Gand a(6), where, from 
eqn. (2)) @( 8) is the probability of death obtained by substituting the Box 
model prediction 6in the dose-response relationship, and @(a*) is the prob- 
ability of death by using the corrected log-dose 6*. 6* may be calculated by 
selecting values of 6 from the normal distribution shown in Fig. 1 and calcu- 
lating the probability of death (Q(6), eqn. 2) for each choice. The mean of 
these probabilities of death is used to back-calculate an equivalent dose 6*. 

Table 1 shows the results of such a calculation for the range - 3 I&S 3 and 
01 o(6) 55. These ranges were chosen to cover all the values of 6 and a(6) 
that might be expected to occur in practice. Thus the limits 6= 3 and 6= - 3 
correspond, respectively, to doses where there is a chance of approximately 
1000~to-1 of being killed or of not being killed. The value a( 6) = 0 corresponds, 
of course, to the deterministic case; while a( 6) = 1 corresponds to what might 
be expected in the body of the cloud, and a(6) > 1 to values at the edge of the 
cloud [4]. 

The main conclusions to emerge are: 
(i) that the use of Sinstead of 6* will lead to an overestimate of the marginal 

mean of the number of people killed, ,u (n), when D> I&,, and, conversely, 
to an underestimate when D <I&,,,, 

(ii) that the extent of the mis-estimation is less than 10% in absolute terms 
if a( 6) < 1, whatever the dose; and 

(iii) that for o(6) > 1 the discrepancy becomes progressively more serious as 
a( 6) increases, a value of N 30% being reached when a( 6) = 5. 

An illustrative calculation of the discrepancy between @(6*) and Q(8) re- 

Probability of death @ (6) 

- 1.0 

DzDso 

(Equivalent dose allowing fat 
A+ behvsm spill variation) 

g (Ideal box Ill&s1 prediction of doss) 

Fig. 1. An illustration of the smoothing operation required to compensate for between-spill vari- 
ability on dose levels. 
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TABLE 1 

Between-spill variation 
cP(h*-@J(J) for a range of values of Gand u(6) 

-3 -2 -1 0 1 2 3 

0 0 0 0 0 0 0 0 
0.2 0 0 0 0 0 0 0 
0.5 0 0.02 0.03 0 -0.03 -0.02 0 
1 0.02 0.06 0.08 0 -0.08 -0.06 -0.02 
2 0.09 0.17 0.17 0 -0.17 -0.17 -0.09 
5 0.29 0.28 0.20 0 -0.20 -0.28 -0.29 

quires knowledge of the Probit parameters of the substance of interest, and so 
must be deferred to the end of the following section, in which Probit parame- 
ters are given for a range of commonly occurring toxic agents. 

4. Dose-response analysis 

The previous two sections have been concerned with analysing the statistical 
aspects of the stochastic process governing the number of people killed at a 
site in an industrial plant as the result of a toxic spill, The process itself was 
assumed to be a Binomial point process in which the probability of death, @, 
was given as a function of the standardised log-dose 6= K In D/&, by means 
of the Probit law, 13= @( 6). The Probit law thus contains two parameters ex- 
plicitly, DsO for location and K for scale, and one parameter implictly, the ex- 
ponent n in the relationship D=JC”dt, giving the received dose a a function 
of concentration, C. 

Specific values for these three parameters were not needed in the investi- 
gation described above, which only required an estimate of the useful ranges 
of Gand o( 6). In practice, however, specific values of these parameters would 
be needed, and in view of this the model of eqn. (2 ) which is equivalent to the 
Probit model was fitted to the dose-response data sets described in [2] in 
which concentration is given in mg/m3 and time in minutes using the method 
of Maximum Likelihood [ 31. The estimated values of the parameters K, n and 
In DsO, together with their respective standard errors, are given in Table 2 for 
the local irritant (LI) group and in Table 3 for the systemically acting (SA) 
group. The transformations from K, n and In Dso to the more familiar Probit 
coefficients are given following eqn. (4). It should be noted that 5 of the sub- 
stances mentioned in [ 21 have been omitted from these tables because some 
of the standard errors involved were greater than 30% of the quantity estimated. 

It is worth remarking that the values obtained for In Dso were very stable 
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TABLE 2 

Local irritant group; values of K, n and In DsO (values in parentheses are standard errors) 

Substance K n ln &O 

NH, 
Hydrogen chloride 
HCl 
Chlorine 
C&. 
Perfluoroisobutylene 
iso-C, F, 
Crotonaldehyde 

Ethylene 
imine 
Bromine 
Br, 
Dibutylhexamethylene- 
diamine 

1.80 
(0.20) 
0.75 

(0.14) 
1.00 

(0.14) 
1.72 

(0.15) 
1.49 

(0.13) 
0.72 

(0.16) 
1.26 

(0.09) 
0.84 

(0.19) 

2.02 
(0.16) 
1.02 

(0.08) 
3.49 

(0.28) 
1.22 

(0.04) 
1.16 

(0.05) 
1.06 

(0.13) 
2.16 

(0.08) 
0.90 

(0.17) 

23.0 
(1.5) 
11.9 
(0.8) 
25.8 
(1.8) 

(& 
12.0 
(0.4) 
10.5 
(0.9 1 
20.6 
(0.7) 
11.7 
(1.7) 

TABLE 3 

Systematically Acting (SA) group; values of K, n and In Ds,, (values in parentheses are standard 
errors) 

Substance K n In &O 

Methyl t-butylether 
(MTBE) 
Methylene chlorobromine 
(CH,ClBr) 
Ethylene chlorobromine 
(CH,HICl,) 
Ethylene dibromide 
(CzH,Br,) 
Tetrachloro-ethylene 
(C&l,) 
Trichloro-ethylene 
(C@&.) 
Carbon Tetrachloride 
CCI, 
Acrylonitrile 
CHaCHCN 

1.78 
(0.11) 
1.80 

(0.13) 
2.68 

(0.07) 
2.28 

(0.08) 
1.39 

(0.10) 
0.80 

(0.18) 
1.04 

(0.13) 
2.20 

(0.10) 

1.95 
(0.31) 
1.65 

(0.10) 
1.20 

(0.03) 
1.15 

(0.03) 
2.00 

(0.18) 
0.82 

(0.25) 
2.86 

(0.32) 
0.99 

(0.04) 

14.7 
(2.0) 
23.1 
(1.2) 
16.4 
(0.3) 
13.8 
(0.2) 
26.5 
(2.0) 
14.4 
(2.8) 
36.6 
(3.6) 
12.1 
(0.3) 

with respect to variation in the probability model used to describe the dose- 
response relationship. Although only the results for the Probit model have 
been reported, parallel calculations were carried out for three additional prob- 
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Fig. 2. A composite Normal probability plot for K, rz and In L&,. 

ability models - the Logistic [3], the Extreme-value [3] and the Binit (Bi- 
nary unit) [ 61. It was found that overall the best fits were obtained using the 
Probit and Binit models, with the edge being slightly in favour of the Binit 
model. However, as the Binit model is essentially a two-parameter model which 
does not lend itself to the theoretical development of Section 2, it was discarded 
in favour of the Probit model which is, in any case, widely used in this and in 
related fields. 

The values of K, n and & are shown plotted in Lognormal probability form 
in Fig. 2, as described in [ 71. In the figure the vertical axis labelled ‘Normal 
Quantities’ is a scale of quantiles of the standard Normal cumulative distri- 
bution function @( . ) . Scatterplots of K against n, Kagainst ln I&, and n against 
In D,,, are shown in Fig. 3. In each case data from the LI group were plotted 
with circles and data from the SA group with crosses. 

Inspection of Fig. 2 shows: 
(i) that, considering the sparseness of the data, a Lognormal probability 

model fits the distributions of K, IZ and In DbO reasonably well; 
(ii) that there is evidence of a systematic difference between the distribution 

of K in the LI group and its distribution in the SA group; 
(iii) that there is evidence of a similar but less pronounced difference in the 

distributions of In &; and 
(iv) that for n there is no evidence of a group-specific effect. 
Figure 3, indicates that a quite strong positive correlation exists between n 

and In &,. Pooling the LI and SA groups together enables a reasonably accu- 
rate calculation to be made of the correlation coefficient in the three cases: the 
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Fig. 3. A display of three pairwise scatter-plots of K, n and In Dm 

TABLE 4 

Correlation coefficients (values in parentheses are standard errors) 

K with n K with In D, n with In D, 

0.07 0.03 0.81 
(0.27) (0.23) (0.08) 

values obtained are shown in Table 4, together with their standard errors in 
parentheses. It will be seen, as expected, that K is effectively uncorrelated with 
n and In Dbo, while the correlation between n and In DSO is roughly 0.8. 
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5. Discussion 

Section 2 has shown by means of a simple probabilistic model for the number 
of people killed at a given location as a result of a toxic spill that the probability 
of death for a person chosen at random - as determined from the Box model 
prediction of the dose received used in conjunction with the dose-response 
relationship - should be corrected to take into account the effect of between- 
spill variability in the dose received. 

Section 3 has described an attempt to quantify the effect of ignoring the 
between-spill variability in the dose received at the location when calculating 
the probability of death. It was found that the error in the calculated proba- 
bility of death could be as large as 0.3. 

The calculations in Section 4 were carried out using two groups of 8 dose- 
response datasets, one covering locally irritant toxins and the other systemic 
action toxins. Each dataset was fitted with a Probit law, giving 16 sets of values 
for the three Probit law parameters K, n and In &,. 

To illustrate the use of the work described above it is helpful to consider a 
specific example. For this purpose a release of 20 tonne of chlorine in neutrally 
stable weather with a windspeed of 3 ms-’ was considered. The dispersion 
calculation was carried out using the computer code DENZ [8], while the tox- 
icity parameters used were taken from Table 2 and the values for 
@(S*) -Q(6) from Table 1. 

The results obtained are summarised in Table 5, and refer to a down-wind 
distance of 1000 m from the point of the spill. Cross-wind distances are given 
which correspond to the approximate levels of fatalities given in the table. 
Values for a( 6) have been chosen as representative of those expected at differ- 
ent positions in the cloud [4 1. The final column shows the error in the per- 
centage fatality rate resulting from ignoring the between spill variation. The 
effect would be most important when a population is at the edge of a concen- 
trated release of toxic material, and is consistent with the findings of Griffiths 
and Harper [ 91. 

It should be noted that in assessing the toxicity of a substance its K-value is 
just as important as its D,, value, since two substances with the same exponent 
n and the same median dose & will give rise to quite different probabilities of 
death at extreme dose levels, as inspection of eqn. (2) shows. Also note that 
the linearity of eqn. (4 ) in In C and In t shows that the concept of one substance 
being more toxic than the other is only valid for a range of values of C and t 
which are likely to occur in practice. The In C - In t plane will always be divided 
by a characteristic straight line such that for values of In C and In t on one side 
of the line, the first substance will be more toxic than the second while on the 
other side of the line the opposite is true. 



329 

TABLE 5 

The effect of ignoring the between-spill variability on the percentage mortality rate from a 20- 
tonne release of chlorine’,’ 

Crosswind O(S) s Y In c”t 0 @(6*)-@(J) 
distance (X100) (X100) 
(m) 

52 100 3 8 28.80 0.5 0 
215 85 1.04 6.04 26.84 1 -8 
235 IO 0.52 5.52 26.32 1.2 -4 
287 20 -0.84 4.16 24.96 2 17 

‘Toxicity: K= 1, n=3.49,lnD,=25.8. 
‘Values in the table relate to 1000 m downwind from a 20-tonne chlorine release. Source term 
allowed 400 te of air to be entrained. Cloud radius at 1000 m= 417 m, defined as 10% of the centre- 
line concentration. Weather considered: Pasquill stability D, wind speed 3 ms-‘. 
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